The Scattering Matrix for Singular Schrödinger Operators
نویسندگان
چکیده
منابع مشابه
Schrödinger Operators with Singular Potentials †
We describe classical and recent results on the spectral theory of Schrödinger and Pauli operators with singular electric and magnetic potentials
متن کاملTime-dependent Scattering Theory for Schrödinger Operators on Scattering Manifolds *
We construct a time-dependent scattering theory for Schrödinger operators on a manifold M with asymptotically conic structure. We use the two-space scattering theory formalism, and a reference operator on a space of the form R×∂M , where ∂M is the boundary of M at infinity. We prove the existence and the completeness of the wave operators, and show that our scattering matrix is equivalent to th...
متن کاملQuasi exactly solvable matrix Schrödinger operators
Two families of quasi exactly solvable 2 × 2 matrix Schrödinger operators are constructed. The first one is based on a polynomial matrix potential and depends on three parameters. The second is a one-parameter generalisation of the scalar Lamé equation. The relationship between these operators and QES Hamiltonians already considered in the literature is pointed out.
متن کاملScattering Operators for Matrix Zakharov-Shabat Systems
In this article the scattering matrix pertaining to the defocusing matrix Zakharov-Shabat system on the line is related to the scattering operator arising from time-dependent scattering theory. Further, the scattering data allowing for a unique retrieval of the potential in the defocusing matrix Zakharov-Shabat system are characterized. Mathematics Subject Classification (2000). Primary 34A55, ...
متن کاملQuasi exactly solvable matrix Schrödinger operators . Yves BRIHAYE Faculté
Two families of quasi exactly solvable 2 × 2 matrix Schrödinger operators are constructed. The first one is based on a polynomial matrix potential and depends on three parameters. The second is a one-parameter generalisation of the scalar Lamé equation. The relationship between these operators and QES Hamiltonians already considered in the literature is pointed out.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1993
ISSN: 0022-247X
DOI: 10.1006/jmaa.1993.1192